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Abstract— A Hadoop cluster is a different type of arithmetic cluster designed specifically for storing, managing and analyzing vast amounts 
of formless data on a circulated computing system. HDFS and Map Reduce are designed for data loading and data processing. The HDFS 
layer delivers a virtual file system towards client application. The main feature of HDFS is data replication and simulated amongst nodes. In 
this paper is an Empirical Assessment of Hadoop's dividing attainment that develops the Hadoop’s default block placement policy which is 
made by designing a rack-aware cluster to improve data obtainability. Also, An Adaptive Data Replication Algorithm based on access count 
prediction in Hadoop using Lagrange’s exclamation is a modified sequence of events. To demonstrate investigates on a rack-aware cluster 
setup which significantly reduced the task completion time and the volume of the data being processed increases the c arithmetic speeds 
due to update cost. The threshold level for balance between the replication factor and update cost is recognized and accessible 
realistically. 

Index Terms— Big Data, Cloud Computing, Hadoop Cluster, HDFS (Hadoop Distributed File System), Hadoop, MapReduce Framework, 
Replica Management. 
 

——————————      —————————— 

1 INTRODUCTION                                                                     
loud computing is an influential technology to maintain 
expensive computing hardware, dedicated space, to per-
form massive-scale and complex computing, and software. 

In clusters of all sizes, throughput and job completion time are 
important metrics for computation efficiency, which determines 
the cost of data centers and user satisfaction [12], [13]. Big Data, 
[2] is termed for a collection of data sets which are large and 
complex and difficult to process using old-fashioned data pro-
cessing tools. The need for Big Data management is to ensure 
high levels of data accessibility for business intelligence, data 
recognize, data processing and big data analytics. Big Data is 
stretchy in that it can process a variety of input data sources, 
structured and unstructured, streaming or not, with very scared 
input data size limits. 

 
Hadoop [11] is the popular open source implementation of 

map-reduce, a powerful tool designed for deep analysis and 
transformation of very large data sets. It is capable to connect 
and coordinate thousands of nodes inside a cluster. A distribut-
ed system is a pool of autonomous compute nodes [1] connect-
ed by swift networks that appear as a single server. In reality, 
solving complex problems involves division of problem into 
subtasks and each of which is solved by one or more compute 
nodes which communicate with each other by message passing. 
The Hadoop runtime system coupled with HDFS provides par-
allelism and concurrency to achieve system reliability. Applica-

tions run in Hadoop as containers, the concurrency of which 
affects completion time of an application as well as system re-
source usage concurrent containers, resource bottlenecks occur 
and when they're too few, system resources are underutilized. 

 Most important categories of the machine in a Hadoop dis-
tribution system are Client machines, Master nodes and Slave 
nodes. The Master nodes organize storing of data and running 
parallel computations on all that data using MapReduce. HDFS 
the Name Node organizes and coordinates the data storage 
function, the Job Tracker organizes and coordinates the parallel 
processing of data using MapReduce algorithm and Slave 
Nodes are the vast majority of machines and do all the cloudy 
work of storing the data and running the computations. Respec-
tively slave runs a Data Node, a Task Tracker spirit that com-
municates with and receives information from their master 
nodes. The Task Tracker spirit is a slave to the Job Tracker 
likewise the Data Node spirit to the Name Node. 

   
MapReduce [3] is one of many programming models availa-

ble for processing large data sets in Hadoop which maintains 
task parallelization, job scheduling, resource allocation and data 
distribution in the backend. For data analysis has two major 
components, a mapper and a reducer in the Map-Reduce 
framework. A mapper maps every key/value record in the da-
taset by random intermediate key and a reducer generates final 
key/value pairs by applying computations on the combined 
pairs. The MapReduce framework deceits in running such sim-
ple but powerful functions with Hadoop’s automatic parallel-
ization, distribution of large-scale computations and fault toler-
ance features using commodity hardware. The MapReduce 
model has been immovable by different areas including distrib-
uted graph, graph problems, inverted index and distributed 
sort. 
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Hadoop Distributed File System (HDFS) [3] is a Java-based 
file system that delivers a scalable and reliable data storage sys-
tem and it is built on top of the local file system and is able to 
support few petabytes of the big dataset to be distributed over 
clusters of service servers.  HDFS [4] file system is designed for 
storing huge files with streaming data access patterns, running 
on clusters of commodity hardware. The HDFS is so large that 
replicas of files are constantly created to meet Performing and 
availability requirements. 

 
A replica [5] is usually created so as the new storage location 

offers better Performing and availability for accesses to or from 
an individual location. The Hadoop architecture the replica is 
commonly selected based on storage and network feasibility 
which makes it fault tolerant soon as to recover from failing 
Data Node. Additional replicas are stored randomly on any 
rack which could be configured and dominated using scripts 
and the store each file as a sequence of blocks. The block size 
and replication factor are configurable per file. The replication 
factor can be specified at file creation time and can be changed 
far along. The Name Node makes all decisions regarding repli-
cation of blocks, it sporadically receives a Block report from 
each of the Data Nodes in the cluster. A Block report contains a 
list of all blocks on a Data Node. 

 
    The rest of this paper is organized as follows. Section II dis-
cusses related work on data replication organizations in the 
cluster; Section III describes the proposed work of a Hadoop 
cluster and the data locality problem; Section IV estimates the 
Performing of the system by conducting experiments on 
changeable data replication levels. Finally, Section V concludes 
and the future scope. 

2   RELATED WORK 
    HDFS is considered to reliably store very big files across 
machines in a large cluster. The tenacity of data replication in 
HDFS is primarily to progress the obtainability of data. Repli-
cation of a data file serves the purpose of system reliability 

where if one or more nodes fail in a cluster. To improve fault 
tolerance of data in the presence of failure and few of those are 
deliberated below. 
Sangwon Seo, Ingook Jang; [7] suggested optimization pat-
terns such as pre-shuffling and prefetching to resolve shared 
environmental harms. Both of the above schemes were im-
plemented in a High Performing MapReduce Engine (HPMR). 
In an Intra block fetching an input split or an intermediate 
output is prefaced whereas the whole candidate data block is 
perfected in the inter-block prefetching. The pre-shuffling 
scheme reduces the amount of intermediate output to shuffle 
and at the time of pre-shuffling HPMR looks over an input 
split before the map phase begins and predicts the target re-
ducer where the key-value pairs are separated. Prefetching 
and Pre-shuffling organizations to improve MapReduce Per-
forming when physical nodes are shared by multiple users. 
HPMR diminishes network overhead and exploits data locali-
ty companionable with both dedicated and shared surround-
ings.  
Abad. C. L, Yi Lu, Campbell. R.H; [6] proposed a data replica-
tion and placement procedure (DARE) that adjusts to the fluc-
tuations in workload. Adaptive Data Replication for Efficient 
resolves two harms, how many replicas to allocate for each file 
and where to place them, using probabilistic sampling and a 
competitive aging algorithm individually at each node. Adap-
tive Data Replication for Efficient benefits from existing re-
mote data rescue and selects a subset of the data and creates a 
replica without consuming additional network and reckoning 
resources. The authors designed a probabilistic dynamic repli-
cation algorithm with the ensuing features: Nodes sample as-
signed tasks and replicate prevalent files in a distributed man-
ner. Correlated data accesses are distributed over diverse 
nodes as old replicas deleted and new replicas are created. 
Investigates demonstrated seven times improvement in data 
locality and 70% improvement in cluster arranging. Reduces 
job turnaround time by 16% in dedicated clusters and 19% in 
virtualized public clouds. 
Khanli. L. M, Isazadeh. A; [8] proposed a procedure to de-
crease access latency by expecting the future usage of files. 
Predictive Hierarchal Fast Spread (PHFS) pre-replicates data 
in a hierarchal data grid using two stages: collecting data ac-
cess statistics and applying data mining techniques like clus-
tering and association instruction mining all over the system. 
Files are assigned value α which is between 0 and 1 for repre-
senting relationships between files. Files are arranged accord-
ing to the value of α which is called the predictive working set. 
PHFS utilizes the predictive working set of a file and replicates 
all members of a predictive working set including the file and 
all files on the path from source to the client. PHFS attempts to 
improve data locality by expecting the user’s future stresses 
and pre-replicating them in advance thereby achieving higher 
accessibility with the enhanced usage of resources. 
Jungha Lee, Jong Beom Lim; [9] proposed a data replication 
scheme (ADRAP) that is adaptive to overhead, associated with 
the data locality problematic. The algorithm works created on 
access count prediction to reduce the data transfer time and 
develops data locality thus reducing total processing time. The 
arrangement adaptively determines the required replication 
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factor by evaluating data access patterns and recent replication 
factor for a particular data file. The paper gives the following: 
Optimizes the replication factor and effectively circumvents 
overhead caused by data replication. Enthusiastically con-
cludes data replication requirements and Minimizes pro-
cessing time of MapReduce trades by humanizing the data 
locality. 
Zaharia.M, Borthakur. D; [10] suggested a delay scheduling 
technique that demonstrates the conflict between fairness in 
scheduling and data locality by scheming a fair scheduler for a 
600-node Hadoop cluster at Facebook. The procedure is appli-
cable under a wide variety of scheduling policies beyond fair 
sharing such as the Hadoop Fair Scheduler. HFS has two main 
objectives: Fair sharing and Data locality. To accomplish the 
area the scheduler reallocates resources between jobs when the 
number of jobs changes by killing running tasks to make room 
for the new job and waiting for running tasks to appearance. 
Delay scheduling accomplishes well in typical Hadoop work-
loads and is applicable beyond fair sharing. Delay scheduling 
in HFS is generalized to implement a hierarchical scheduling 
policy motivated by the needs of Facebook’s users. The 
schedule divides slots between users based on weighted fair 
sharing at top-level and sanctions users to schedule their own 
employments using either FIFO or fair sharing. 

3    PROPOSED WORK 
    The perseverance of this investigation is to evaluate the Per-
forming of the Hadoop cluster and to the organization a rack-
aware Hadoop cluster. To accomplish the purpose a data rep-
lication pattern is reformed to fit the system, implemented 
using a rack-aware Hadoop cluster. In such a cluster task are 
run manually with varying levels of data replication. This re-
search work makes a small involvement in Minimizing pro-
cessing time and data transfer load between racks by improv-
ing data locality. 
 
3.1. Rack Aware Hadoop Clusters  
     Hadoop apparatuses are rack-aware. In HDFS block place-
ment will use rack awareness for fault tolerance by placing 
one block replica on a different rack. This provides data avail-
ability in the event of a network switch failure or partition 
within the cluster. The Data obtainability and locality are in-
terrelated dominions in the realm of distributed processing 
which when not handle appropriately leads to Performed is-
sues paper contracts with a similar type situation where a 
cluster of nodes are involved and each node belonging to the 
same or different rack. For the purpose of Experimental 
Assessment, this paper utilizes a Hadoop cluster setup with 
one Master node and seven slave nodes each configured au-
tomatically to define the rack number it belongs. In this paper 
an enhanced data placement policy to avoid data loss and im-
prove network Depiction. 

 
Data blocks are replicated to multiple machines to preclude 
data loss due to machine fiascoes. A typical block size used by 
HDFS is 128 MB. Thus, an HDFS file is chopped up into 128 
MB chunks, and if possible, each chunk will reside on a differ-

ent Data Node. A postulation that two machines in the same 
rack have more bandwidth and lower latency between each 
other than two machines in two different racks is painstaking. 
It is also assumed cross-rack latency is higher than in-rack la-
tency most of the time. The system is designed for Taxation is 
shown in figure 2. 
 

 
3.2. Access Count Prediction 

Data is replicated thoughtfully for if the replication factor is 
higher than access count for the specific file then the probabil-
ity of being processed with node locality is higher than that of 
the contrasting case. Maintaining different replication factors 
per data file and haughty that a higher replication factor for a 
file with higher access count does not always guarantee better 
data locality. The current replication factor to determine the 
optimal replication factor. 

In addition, the number of rack-off locality nodes is effec-
tively reduced by the replica placement policy. To predict ac-
cess count for individual files this work utilizes Lagrange’s 
interpolation using a polynomial expression. The calculated 
method is given below: 
In the equation,  
Let N is the number of points,  are the point and fi be 
the function of . 
To calculate the predicted access count, substitute x by time t. 

Where access time t and y by an access count at t. 
 
3.3. Data Placement Policy 
    In-rack nodes have much more required network traffic 
than off-rack nodes. The cluster proprietor uses the configura-
tion variable net.topology.script.file.name to choose on which 
rack the nodes belong to and this script is configured so that 
each node runs the script to determine its rack id. In a default 
fixing nodes are assumed to belong to the same rack with sim-
ilar rack id. 
In the case of a small cluster, servers are connected by a single 
switch with two levels of locality on-machine and off-machine. 
But for larger installations, it must be kept in mind that data 
replicas occur on multiple machines and distances multiple 
racks. A rack aware Hadoop file system is created with the use 
of scripts which allows the master node to map the network 
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topology of the cluster. The script is in an executable form 
which allows it to return the track address of each node. The 
script returns on a list of rack names, one for each input which 
is provided as arguments such as IP addresses of nodes in the 
cluster ordered consistently. Mapping scripts specify the key 
topology.script.file.name in conf/hadoop-site.xml. 
3.3.1. Configuring Rack Awareness 
    To configure a Hadoop cluster into a rack-aware system 
data must be separated into multiple file blocks and store 
them on different machines among the cluster, failing to or-
ganize a Hadoop into a rack-aware system may result in loss 
of data, but rack failure is not recurrent and this can be avoid-
ed by utilizing Hadoop configuration files. Hadoop is config-
ured using the topology things and input file to the script for 
rack identification. The following script performs rack identi-
fication based on IP addresses given a hierarchical IP address-
ing scheme enforced by the network administrator. 
 
Configuring rack awareness in Hadoop involves two steps: 
 
• Configure the “topology.script.file.name” in core-site.xml 

 

4   EXPERIENTIAL ASSESSMENT 
    Experiments were directed on the rack-aware Hadoop clus-
ter to evaluate its Representation in terms of data availability. 
It involves two situations: one involving too many data files 
and other with no data files but complex computations. The 
former one is the WordCount application and the latter is Pi 
value calculation, also both of the above experiments were 
conducted in the Hadoop Framework. Machine Configuration: 
8 Nodes (Similar).Nodes within a rack are connected by one 
Ethernet Switch and one Fast Ethernet switch is used between 
racks. The size of data block is set to 64Mb with an increasing 
replication factor starting from 1. Specifically, 8 jobs are run 
ranging from 1 to 8 replication levels which are not greater 

than a number of nodes available in the cluster. The result of 
the map phase only is experimented i.e. the completion time 
and data locality of the map phase is averaged over 8 runs. As 
noticed, in terms of throughput, the tasks with node locality is 
better than tasks with rack-off locality. 
 
4.1. Results and Graph 
    Representation Assessments show that as replication levels 
increase the task completion time gets significantly concen-
trated for computation involving no data files. But for compu-
tations that encompass data files the completion time reduces 
and then again shoots up due to update cost. Mutually exper-
imentations were conducted on replication levels ranging 
from one to eight which is not higher than a number of nodes 
in the cluster.  

 
Figure 3. Replication Levels for PI Value 

 
Figure 3 demonstrations that the data replication scheme used 
in PI value calculation reduces the task completion time. By 
comparing, with increasing replication factors there is some 
increase in the Performing and when the replication level is 
increased by 3, its completion time is 337 s, and advance re-
duces significantly to 8.12 s at replication level 8. This 
demonstration that as replication factor increases multiple 
map stages is announced and thus the computation speeds up. 
 
4.1.2. Experiment for Word Count 

 
Figure 4. Replication Levels for Word Count 

 
Figure 4 demonstrations the task completion time for Word 
Count application where the completion time reduces linearly 

topology.script.file.name Rack-awareness.sh 

<property>  
<name>topology.node.switch.ma
pping.impl</name> <val-
ue>org.apache.hadoop.net.Script
BasedMapping </value> 
</property>  
<property> 

<name>topology.script.fil
e.name</name>  
<value>core/rack-
awareness.sh</value> 

</property> 

HADOOP_CONF=/usr/local/hadoop/conf  
while [ $# -gt 0 ] ; do 
 nodeArg=$1 
ex-
ec<${HADOOP_CONF}/topology.
data result=””while read line ; do 
      ar=( $line ) 
if [ "${ar[0]}” = “$nodeArg” ] ; 
 then result=”${ar[1]}” 
fi 
  done 
   shift 
if [ -z "$result" ] ; then  
   echo -n “/default/rack “ 
else  
  echo -n “$result “ 
fi 
  done 

Topology.data 
(master)Machine1.pc  
(slave)Machine2.pc  
(slave)Machine3.pc   
(slave)Machine4.pc  

(slave)Machine5.pc                 /dc3/rack3 
(slave)Machine6.pc                /dc3/rack3 
(slave)Machine7.pc                 /dc4/rack4 
(slave)Machine8.pc                  /dc4/rack4 
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with replication factor increase but once it reaches the thresh-
old level the Enactment starts to deteriorate. This shows that 
the computations involving data files do not linearly improve 
in Enactment as replication increases. By default, the replica-
tion level in HDFS is set to 3 which will reduce the Performing 
speed and thus the completion time is 132220 seconds. On 
increased replication levels the computation speed boosts up 
but once it reaches the threshold the time comes down from 
1300430 s to 1608600 s. 
 
Representation Assessments demonstration that as replication 
levels increase the task completion time gets significantly re-
duced for computation involving no data files. But for compu-
tations that involve data files, the completion time reduces and 
then again shoots up due to update cost. Both experiments 
were conducted on replication levels ranging from one to 
eight which is not higher than a number of nodes in the clus-
ter. 

5 CONCLUSION AND FUTURE SCOPE 
Data Replication in Hadoop framework to investigate the da-

ta locality problem was experimented and proved that replica-
tion improves Performing and also decreases it as the threshold 
limit is crossed. Supplementary the replication factor was sup-
ported by an access count prediction algorithm for data files 
using Lagrange’s interpolation which optimizes the replication 
factor per data file. Enactment Assessment indicated that our 
data replication organization reduces the task completion time. 
The task completion time for Pi value calculation started with 
680s and came down to 8.12s and similarly, the Word Count 
application does start with a completion time of 134300 s and 
came down to 130430 s. But once the threshold limit is reached 
the completion time shoots up to 168600 s. 
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