
International Journal of Scientific & Engineering Research Volume 9, Issue 8, August-2018 1842
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

An Empirical Assessment of Hadoop Cluster
Performance Enhancement on Replica

Management

Sujit Roy, Md. Atikur Rahman, Md. Rasel Mia

Abstract— A Hadoop cluster is a different type of arithmetic cluster designed specifically for storing, managing and analyzing vast amounts
of formless data on a circulated computing system. HDFS and Map Reduce are designed for data loading and data processing. The HDFS
layer delivers a virtual file system towards client application. The main feature of HDFS is data replication and simulated amongst nodes. In
this paper is an Empirical Assessment of Hadoop's dividing attainment that develops the Hadoop’s default block placement policy which is
made by designing a rack-aware cluster to improve data obtainability. Also, An Adaptive Data Replication Algorithm based on access count
prediction in Hadoop using Lagrange’s exclamation is a modified sequence of events. To demonstrate investigates on a rack-aware cluster
setup which significantly reduced the task completion time and the volume of the data being processed increases the c arithmetic speeds
due to update cost. The threshold level for balance between the replication factor and update cost is recognized and accessible
realistically.

Index Terms— Big Data, Cloud Computing, Hadoop Cluster, HDFS (Hadoop Distributed File System), Hadoop, MapReduce Framework,
Replica Management.

—————————— ——————————

1 INTRODUCTION
loud computing is an influential technology to maintain
expensive computing hardware, dedicated space, to per-
form massive-scale and complex computing, and software.

In clusters of all sizes, throughput and job completion time are
important metrics for computation efficiency, which determines
the cost of data centers and user satisfaction [12], [13]. Big Data,
[2] is termed for a collection of data sets which are large and
complex and difficult to process using old-fashioned data pro-
cessing tools. The need for Big Data management is to ensure
high levels of data accessibility for business intelligence, data
recognize, data processing and big data analytics. Big Data is
stretchy in that it can process a variety of input data sources,
structured and unstructured, streaming or not, with very scared
input data size limits.

Hadoop [11] is the popular open source implementation of

map-reduce, a powerful tool designed for deep analysis and
transformation of very large data sets. It is capable to connect
and coordinate thousands of nodes inside a cluster. A distribut-
ed system is a pool of autonomous compute nodes [1] connect-
ed by swift networks that appear as a single server. In reality,
solving complex problems involves division of problem into
subtasks and each of which is solved by one or more compute
nodes which communicate with each other by message passing.
The Hadoop runtime system coupled with HDFS provides par-
allelism and concurrency to achieve system reliability. Applica-

tions run in Hadoop as containers, the concurrency of which
affects completion time of an application as well as system re-
source usage concurrent containers, resource bottlenecks occur
and when they're too few, system resources are underutilized.

 Most important categories of the machine in a Hadoop dis-
tribution system are Client machines, Master nodes and Slave
nodes. The Master nodes organize storing of data and running
parallel computations on all that data using MapReduce. HDFS
the Name Node organizes and coordinates the data storage
function, the Job Tracker organizes and coordinates the parallel
processing of data using MapReduce algorithm and Slave
Nodes are the vast majority of machines and do all the cloudy
work of storing the data and running the computations. Respec-
tively slave runs a Data Node, a Task Tracker spirit that com-
municates with and receives information from their master
nodes. The Task Tracker spirit is a slave to the Job Tracker
likewise the Data Node spirit to the Name Node.

MapReduce [3] is one of many programming models availa-

ble for processing large data sets in Hadoop which maintains
task parallelization, job scheduling, resource allocation and data
distribution in the backend. For data analysis has two major
components, a mapper and a reducer in the Map-Reduce
framework. A mapper maps every key/value record in the da-
taset by random intermediate key and a reducer generates final
key/value pairs by applying computations on the combined
pairs. The MapReduce framework deceits in running such sim-
ple but powerful functions with Hadoop’s automatic parallel-
ization, distribution of large-scale computations and fault toler-
ance features using commodity hardware. The MapReduce
model has been immovable by different areas including distrib-
uted graph, graph problems, inverted index and distributed
sort.

C

————————————————
• Sujit Roy is working as a faculty member at Dept. of Computer Science and

Engineering, Gono Bishwabidyalay, Bangladesh, PH-01746952150.
E-mail: roysojib09102029@gmail.com

• Md. Atikur Rahman is working as a faculty member at Dept. of Computer
Science and Engineering, Gono Bishwabidyalay, Bangladesh,
PH-01912288599. E-mail: atikhasan.cse@gmail.com

• Md. Rasel Mia is working as a faculty member at Dept. of Computer Science
and Engineering, Gono Bishwabidyalay, Bangladesh, PH-01738189846,
E-mail: rasel376mahmud@gmail.com

IJSER

http://www.ijser.org/
mailto:roysojib09102029@gmail.com
mailto:atikhasan.cse@gmail.com
mailto:rasel376mahmud@gmail.com

International Journal of Scientific & Engineering Research Volume 9, Issue 8, August-2018 1843
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Hadoop Distributed File System (HDFS) [3] is a Java-based
file system that delivers a scalable and reliable data storage sys-
tem and it is built on top of the local file system and is able to
support few petabytes of the big dataset to be distributed over
clusters of service servers. HDFS [4] file system is designed for
storing huge files with streaming data access patterns, running
on clusters of commodity hardware. The HDFS is so large that
replicas of files are constantly created to meet Performing and
availability requirements.

A replica [5] is usually created so as the new storage location

offers better Performing and availability for accesses to or from
an individual location. The Hadoop architecture the replica is
commonly selected based on storage and network feasibility
which makes it fault tolerant soon as to recover from failing
Data Node. Additional replicas are stored randomly on any
rack which could be configured and dominated using scripts
and the store each file as a sequence of blocks. The block size
and replication factor are configurable per file. The replication
factor can be specified at file creation time and can be changed
far along. The Name Node makes all decisions regarding repli-
cation of blocks, it sporadically receives a Block report from
each of the Data Nodes in the cluster. A Block report contains a
list of all blocks on a Data Node.

 The rest of this paper is organized as follows. Section II dis-
cusses related work on data replication organizations in the
cluster; Section III describes the proposed work of a Hadoop
cluster and the data locality problem; Section IV estimates the
Performing of the system by conducting experiments on
changeable data replication levels. Finally, Section V concludes
and the future scope.

2 RELATED WORK
 HDFS is considered to reliably store very big files across
machines in a large cluster. The tenacity of data replication in
HDFS is primarily to progress the obtainability of data. Repli-
cation of a data file serves the purpose of system reliability

where if one or more nodes fail in a cluster. To improve fault
tolerance of data in the presence of failure and few of those are
deliberated below.
Sangwon Seo, Ingook Jang; [7] suggested optimization pat-
terns such as pre-shuffling and prefetching to resolve shared
environmental harms. Both of the above schemes were im-
plemented in a High Performing MapReduce Engine (HPMR).
In an Intra block fetching an input split or an intermediate
output is prefaced whereas the whole candidate data block is
perfected in the inter-block prefetching. The pre-shuffling
scheme reduces the amount of intermediate output to shuffle
and at the time of pre-shuffling HPMR looks over an input
split before the map phase begins and predicts the target re-
ducer where the key-value pairs are separated. Prefetching
and Pre-shuffling organizations to improve MapReduce Per-
forming when physical nodes are shared by multiple users.
HPMR diminishes network overhead and exploits data locali-
ty companionable with both dedicated and shared surround-
ings.
Abad. C. L, Yi Lu, Campbell. R.H; [6] proposed a data replica-
tion and placement procedure (DARE) that adjusts to the fluc-
tuations in workload. Adaptive Data Replication for Efficient
resolves two harms, how many replicas to allocate for each file
and where to place them, using probabilistic sampling and a
competitive aging algorithm individually at each node. Adap-
tive Data Replication for Efficient benefits from existing re-
mote data rescue and selects a subset of the data and creates a
replica without consuming additional network and reckoning
resources. The authors designed a probabilistic dynamic repli-
cation algorithm with the ensuing features: Nodes sample as-
signed tasks and replicate prevalent files in a distributed man-
ner. Correlated data accesses are distributed over diverse
nodes as old replicas deleted and new replicas are created.
Investigates demonstrated seven times improvement in data
locality and 70% improvement in cluster arranging. Reduces
job turnaround time by 16% in dedicated clusters and 19% in
virtualized public clouds.
Khanli. L. M, Isazadeh. A; [8] proposed a procedure to de-
crease access latency by expecting the future usage of files.
Predictive Hierarchal Fast Spread (PHFS) pre-replicates data
in a hierarchal data grid using two stages: collecting data ac-
cess statistics and applying data mining techniques like clus-
tering and association instruction mining all over the system.
Files are assigned value α which is between 0 and 1 for repre-
senting relationships between files. Files are arranged accord-
ing to the value of α which is called the predictive working set.
PHFS utilizes the predictive working set of a file and replicates
all members of a predictive working set including the file and
all files on the path from source to the client. PHFS attempts to
improve data locality by expecting the user’s future stresses
and pre-replicating them in advance thereby achieving higher
accessibility with the enhanced usage of resources.
Jungha Lee, Jong Beom Lim; [9] proposed a data replication
scheme (ADRAP) that is adaptive to overhead, associated with
the data locality problematic. The algorithm works created on
access count prediction to reduce the data transfer time and
develops data locality thus reducing total processing time. The
arrangement adaptively determines the required replication

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 8, August-2018 1844
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

factor by evaluating data access patterns and recent replication
factor for a particular data file. The paper gives the following:
Optimizes the replication factor and effectively circumvents
overhead caused by data replication. Enthusiastically con-
cludes data replication requirements and Minimizes pro-
cessing time of MapReduce trades by humanizing the data
locality.
Zaharia.M, Borthakur. D; [10] suggested a delay scheduling
technique that demonstrates the conflict between fairness in
scheduling and data locality by scheming a fair scheduler for a
600-node Hadoop cluster at Facebook. The procedure is appli-
cable under a wide variety of scheduling policies beyond fair
sharing such as the Hadoop Fair Scheduler. HFS has two main
objectives: Fair sharing and Data locality. To accomplish the
area the scheduler reallocates resources between jobs when the
number of jobs changes by killing running tasks to make room
for the new job and waiting for running tasks to appearance.
Delay scheduling accomplishes well in typical Hadoop work-
loads and is applicable beyond fair sharing. Delay scheduling
in HFS is generalized to implement a hierarchical scheduling
policy motivated by the needs of Facebook’s users. The
schedule divides slots between users based on weighted fair
sharing at top-level and sanctions users to schedule their own
employments using either FIFO or fair sharing.

3 PROPOSED WORK
 The perseverance of this investigation is to evaluate the Per-
forming of the Hadoop cluster and to the organization a rack-
aware Hadoop cluster. To accomplish the purpose a data rep-
lication pattern is reformed to fit the system, implemented
using a rack-aware Hadoop cluster. In such a cluster task are
run manually with varying levels of data replication. This re-
search work makes a small involvement in Minimizing pro-
cessing time and data transfer load between racks by improv-
ing data locality.

3.1. Rack Aware Hadoop Clusters
 Hadoop apparatuses are rack-aware. In HDFS block place-
ment will use rack awareness for fault tolerance by placing
one block replica on a different rack. This provides data avail-
ability in the event of a network switch failure or partition
within the cluster. The Data obtainability and locality are in-
terrelated dominions in the realm of distributed processing
which when not handle appropriately leads to Performed is-
sues paper contracts with a similar type situation where a
cluster of nodes are involved and each node belonging to the
same or different rack. For the purpose of Experimental
Assessment, this paper utilizes a Hadoop cluster setup with
one Master node and seven slave nodes each configured au-
tomatically to define the rack number it belongs. In this paper
an enhanced data placement policy to avoid data loss and im-
prove network Depiction.

Data blocks are replicated to multiple machines to preclude
data loss due to machine fiascoes. A typical block size used by
HDFS is 128 MB. Thus, an HDFS file is chopped up into 128
MB chunks, and if possible, each chunk will reside on a differ-

ent Data Node. A postulation that two machines in the same
rack have more bandwidth and lower latency between each
other than two machines in two different racks is painstaking.
It is also assumed cross-rack latency is higher than in-rack la-
tency most of the time. The system is designed for Taxation is
shown in figure 2.

3.2. Access Count Prediction

Data is replicated thoughtfully for if the replication factor is
higher than access count for the specific file then the probabil-
ity of being processed with node locality is higher than that of
the contrasting case. Maintaining different replication factors
per data file and haughty that a higher replication factor for a
file with higher access count does not always guarantee better
data locality. The current replication factor to determine the
optimal replication factor.

In addition, the number of rack-off locality nodes is effec-
tively reduced by the replica placement policy. To predict ac-
cess count for individual files this work utilizes Lagrange’s
interpolation using a polynomial expression. The calculated
method is given below:
In the equation,
Let N is the number of points, are the point and fi be
the function of .
To calculate the predicted access count, substitute x by time t.

Where access time t and y by an access count at t.

3.3. Data Placement Policy
 In-rack nodes have much more required network traffic
than off-rack nodes. The cluster proprietor uses the configura-
tion variable net.topology.script.file.name to choose on which
rack the nodes belong to and this script is configured so that
each node runs the script to determine its rack id. In a default
fixing nodes are assumed to belong to the same rack with sim-
ilar rack id.
In the case of a small cluster, servers are connected by a single
switch with two levels of locality on-machine and off-machine.
But for larger installations, it must be kept in mind that data
replicas occur on multiple machines and distances multiple
racks. A rack aware Hadoop file system is created with the use
of scripts which allows the master node to map the network

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 8, August-2018 1845
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

topology of the cluster. The script is in an executable form
which allows it to return the track address of each node. The
script returns on a list of rack names, one for each input which
is provided as arguments such as IP addresses of nodes in the
cluster ordered consistently. Mapping scripts specify the key
topology.script.file.name in conf/hadoop-site.xml.
3.3.1. Configuring Rack Awareness
 To configure a Hadoop cluster into a rack-aware system
data must be separated into multiple file blocks and store
them on different machines among the cluster, failing to or-
ganize a Hadoop into a rack-aware system may result in loss
of data, but rack failure is not recurrent and this can be avoid-
ed by utilizing Hadoop configuration files. Hadoop is config-
ured using the topology things and input file to the script for
rack identification. The following script performs rack identi-
fication based on IP addresses given a hierarchical IP address-
ing scheme enforced by the network administrator.

Configuring rack awareness in Hadoop involves two steps:

• Configure the “topology.script.file.name” in core-site.xml

4 EXPERIENTIAL ASSESSMENT
 Experiments were directed on the rack-aware Hadoop clus-
ter to evaluate its Representation in terms of data availability.
It involves two situations: one involving too many data files
and other with no data files but complex computations. The
former one is the WordCount application and the latter is Pi
value calculation, also both of the above experiments were
conducted in the Hadoop Framework. Machine Configuration:
8 Nodes (Similar).Nodes within a rack are connected by one
Ethernet Switch and one Fast Ethernet switch is used between
racks. The size of data block is set to 64Mb with an increasing
replication factor starting from 1. Specifically, 8 jobs are run
ranging from 1 to 8 replication levels which are not greater

than a number of nodes available in the cluster. The result of
the map phase only is experimented i.e. the completion time
and data locality of the map phase is averaged over 8 runs. As
noticed, in terms of throughput, the tasks with node locality is
better than tasks with rack-off locality.

4.1. Results and Graph
 Representation Assessments show that as replication levels
increase the task completion time gets significantly concen-
trated for computation involving no data files. But for compu-
tations that encompass data files the completion time reduces
and then again shoots up due to update cost. Mutually exper-
imentations were conducted on replication levels ranging
from one to eight which is not higher than a number of nodes
in the cluster.

Figure 3. Replication Levels for PI Value

Figure 3 demonstrations that the data replication scheme used
in PI value calculation reduces the task completion time. By
comparing, with increasing replication factors there is some
increase in the Performing and when the replication level is
increased by 3, its completion time is 337 s, and advance re-
duces significantly to 8.12 s at replication level 8. This
demonstration that as replication factor increases multiple
map stages is announced and thus the computation speeds up.

4.1.2. Experiment for Word Count

Figure 4. Replication Levels for Word Count

Figure 4 demonstrations the task completion time for Word
Count application where the completion time reduces linearly

topology.script.file.name Rack-awareness.sh

<property>
<name>topology.node.switch.ma
pping.impl</name> <val-
ue>org.apache.hadoop.net.Script
BasedMapping </value>
</property>
<property>

<name>topology.script.fil
e.name</name>
<value>core/rack-
awareness.sh</value>

</property>

HADOOP_CONF=/usr/local/hadoop/conf
while [$# -gt 0] ; do
 nodeArg=$1
ex-
ec<${HADOOP_CONF}/topology.
data result=””while read line ; do
 ar=($line)
if ["${ar[0]}” = “$nodeArg”] ;
 then result=”${ar[1]}”
fi
 done
 shift
if [-z "$result"] ; then
 echo -n “/default/rack “
else
 echo -n “$result “
fi
 done

Topology.data
(master)Machine1.pc
(slave)Machine2.pc
(slave)Machine3.pc
(slave)Machine4.pc

(slave)Machine5.pc /dc3/rack3
(slave)Machine6.pc /dc3/rack3
(slave)Machine7.pc /dc4/rack4
(slave)Machine8.pc /dc4/rack4

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 8, August-2018 1846
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

with replication factor increase but once it reaches the thresh-
old level the Enactment starts to deteriorate. This shows that
the computations involving data files do not linearly improve
in Enactment as replication increases. By default, the replica-
tion level in HDFS is set to 3 which will reduce the Performing
speed and thus the completion time is 132220 seconds. On
increased replication levels the computation speed boosts up
but once it reaches the threshold the time comes down from
1300430 s to 1608600 s.

Representation Assessments demonstration that as replication
levels increase the task completion time gets significantly re-
duced for computation involving no data files. But for compu-
tations that involve data files, the completion time reduces and
then again shoots up due to update cost. Both experiments
were conducted on replication levels ranging from one to
eight which is not higher than a number of nodes in the clus-
ter.

5 CONCLUSION AND FUTURE SCOPE
Data Replication in Hadoop framework to investigate the da-

ta locality problem was experimented and proved that replica-
tion improves Performing and also decreases it as the threshold
limit is crossed. Supplementary the replication factor was sup-
ported by an access count prediction algorithm for data files
using Lagrange’s interpolation which optimizes the replication
factor per data file. Enactment Assessment indicated that our
data replication organization reduces the task completion time.
The task completion time for Pi value calculation started with
680s and came down to 8.12s and similarly, the Word Count
application does start with a completion time of 134300 s and
came down to 130430 s. But once the threshold limit is reached
the completion time shoots up to 168600 s.

6 REFERENCE

[1] Dean, J., Chang, F., Ghemawat, S., Hsieh, W. C., Wal-

lach, D. A., Burrows, M...& Gruber, R. E. (2008).
Bigtable: A distributed storage system for structured
data. ACM Transactions on Computer Systems
(TOCS), 26(2), 4.

[2] Agrawal, Divyakant, Sudipto Das, and Amr El

Abbadi. "Big data and cloud computing: current state
and future opportunities." In Proceedings of the 14th
International Conference on Extending Database
Technology, pp. 530-533. ACM, 2011.

[3] J. Dean and S. Ghemawat, MapReduce: a flexible data

processing tool, Commun. ACM, Vol. 53 (1), pp. 7277,
2010.

[4] Hadoop DFS User Guide. http://hadoop.apache.org/.

[5] Fadika, Zacharia, Madhusudhan Govindaraju, Rich-

ard Canon, and Lavanya Ramakrishnan. "Evaluating
Hadoop for data-intensive scientific operations."

InCloud Computing (CLOUD), 2012 IEEE 5th Interna-
tional Conference on, pp. 67-74. IEEE, 2012.

[6] K. Elissa, Abad, Cristina L., Yi Lu, and Roy H.

Campbell. "DARE: Adaptive data replication for effi-
cient cluster scheduling." In Cluster Computing
(Cluster), 2011 IEEE International Conference on, pp.
159-168. IEEE, 2011. “Title of paper if known,” un-
published.

[7] Seo, Sangwon, Ingook Jang, Kyung Chung Woo,

Inkyo Kim, Jin-Soo Kim, and Seungryoul Maeng.
"HPMR: Prefetching and pre-shuffling in shared
MapReduce computation environment." In Cluster
Computing and Workshops, 2009. CLUSTER'09.
IEEE International Conference on, pp. 1-8. IEEE,
2009.

[8] Khanli, Leyli Mohammad, Ayaz Isazadeh, and

Tahmuras N. Shishavan. "PHFS: A dynamic replica-
tion method, to decrease access latency in the multi-
tier data grid." Future Generation Computer Systems
27, no. 3 (2011): 233-244.

[9] Lee, Jungha, JongBeom Lim, HeonchangYu Daeyong

Jung, KwangSik Chung, and JoonMin Gil. "Adaptive
Data Replication Scheme Based on Access Count
Prediction in Hadoop." The World Congress in
Computer Science, Computer Engineering, and Ap-
plied Computing, 2013.

[10] Zaharia, Matei, Dhruba Borthakur, Joydeep Sen

Sarma, Khaled Elmeleegy, Scott Shenker, and Ion
Stoica. "Delay scheduling: a simple technique for
achieving locality and fairness in cluster scheduling."
In Proceedings of the 5th European conference on
Computer systems, pp. 265-278. ACM, 2010.

[11] J. Liu, F. Liu, and N. Ansari, "Monitoring and analyz-
ing big traffic data of a large-scale cellular network
with Hadoop," Network, vol. 28, issue 4, pp. 32-39,
2014.

[12] G. Ananthanarayanan, S. Agarwal, S. Kandula, A.
Greenberg, I. Stoica, D. Harlan, E. Harris, "Scarlett:
Coping with skewed popularity content in
MapReduce clusters", Proc. Eur. Conf Comput. Syst.
(EurcSys), 2011.

[13] M. Zaharia, D. Borthakur, J. Sen Sarma, K.
Elmeleegy, S. Shenker, I. Stoica, "Delay scheduling:
A simple technique for achieving locality and fair-
ness in cluster scheduling", Proc. Eur. Conf. Comput.
Syst. (EuroSys), 2010.

IJSER

http://www.ijser.org/

	1 Introduction
	2 Related Work
	3 Proposed Work
	4 Experiential Assessment
	5 Conclusion and Future Scope
	6 Reference

